Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Anorganische Chemie

Das Wasser in Deiner Trinkflasche, der Sauerstoff in der Luft, das Salz auf Deinen Pommes Frites – all das sind Beispiele für anorganische Verbindungen. Anorganische Stoffe gibt es schon, seitdem es die Erde gibt, also ungefähr fünf Milliarden Jahre. Damals war der Planet noch ein ungemütlicher Feuerball, auf dem bestimmt niemand freiwillig leben wollen würde. 

Los geht’s

Lerne mit Millionen geteilten Karteikarten

Leg kostenfrei los

Schreib bessere Noten mit StudySmarter Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Leg kostenfrei los
Du hast dein AI Limit auf der Website erreicht

Erstelle unlimitiert Karteikarten auf StudySmarter

StudySmarter Redaktionsteam

Team Anorganische Chemie Lehrer

  • 17 Minuten Lesezeit
  • Geprüft vom StudySmarter Redaktionsteam
Erklärung speichern Erklärung speichern
Inhaltsverzeichnis
Inhaltsverzeichnis

Springe zu einem wichtigen Kapitel

    Mit der Zeit kühlte er jedoch ab, sodass prall gefüllte Ozeane entstehen konnten. Mit dem vielen Wasser – dem wohl wichtigsten anorganischen Stoff – entstand mit der Zeit auch das Leben. Dafür mussten Kohlenwasserstoffe entstehen, die von Lebewesen in viele verschiedene Formen und Längen umgewandelt werden können.

    Genau hier wird die Grenze zwischen der anorganischen und der organischen Chemie gezogen. Während sich die organische Chemie mit Stoffen befasst, die aus Kohlenwasserstoffketten bestehen, liegt die Aufgabe der anorganischen Chemie darin, die unbelebte Natur zu erforschen.

    Allgemeine und Anorganische Chemie: Zusammenfassung

    So viel zur Abgrenzung der anorganischen Chemie (auch Anorganik), aber was ist eigentlich die allgemeine Chemie? Häufig werden die Begriffe gleichbedeutend verwendet, weil sie beide die Grundlage für alle anderen Unterthemen darstellen. Tatsächlich gibt es auch keine genaue Abgrenzung zwischen diesen beiden Themenbereichen.

    Allerdings kannst Du Dir merken, dass zur allgemeinen Chemie Themen wie das Periodensystem und die chemische Bindung gezählt werden. Denn: die Untersuchung der Elemente und Verbindungen ist für alle Teilgebiete der Chemie wichtig.

    Periodensystem der Elemente

    Das Periodensystem der Elemente (kurz: PSE) ist das mit Abstand wichtigste Werkzeug in der anorganischen Chemie. Forschenden erlaubt das Periodensystem grob vorherzusagen, wieso Elemente reagieren, welche Bindungen die Elemente wahrscheinlich eingehen, und, wie stabil die entstehenden Verbindungen sein werden.

    In diesem Studyset aus der anorganischen Chemie lernst Du alles vom Aufbau der Atome über den Aufbau des Periodensystems mit Gruppen und Perioden bis hin zu den Elementen der einzelnen Hauptgruppen. Schau Dir dazu doch gern mal die entsprechende Erklärung an.

    Chemische Bindungen

    Hast Du Dich schon immer mal gefragt, wieso Stoffe zusammenhalten oder wieso manche Stoffe biegsam sind und andere wiederum spröde? All das lässt sich durch chemische Bindungen erklären! Auf StudySmarter lernst Du alles zu den Primärbindungen, die die Bindungen im Molekül beschreiben und Du erfährst, was eine Sekundärbindung ist.

    Wenn Du Dich für die Ionenbindung, metallische Bindung oder Kovalente Bindung interessierst, bist Du in diesem Unterset der anorganischen Chemie genau richtig.

    Anorganische Stoffe erkennst Du in der Regel daran, dass sie keine Kohlenwasserstoffketten enthalten.

    Diese Definition der anorganischen Chemie grenzt die Auswahl nicht unbedingt ein, denkst Du jetzt vielleicht. Schließlich brauchst Du nur einen Blick ins Periodensystem zu werfen, um zu merken, dass es entsprechend der vielen anderen Elemente eine ganze Reihe an unterschiedlichen anorganischen Stoffen geben muss. Mit dieser Annahme liegst Du natürlich völlig richtig. Daher liest Du in diesem Abschnitt von den wichtigsten Stoffgruppen der anorganischen Chemie und welche Ausnahmen es gibt.

    Spezialfall: Anorganische Kohlenstoffverbindungen

    Auch wenn die Kohlenstoffverbindungen generell als organische Stoffe bezeichnet werden, gibt es doch ein paar wichtige Ausnahmen, die zur anorganischen Chemie zählen. Diese Kohlenstoffverbindungen werden als anorganische Stoffe betrachtet, da sie entweder strukturell den anderen anorganischen Verbindungen ähneln oder nicht auf durch Lebenskraft erzeugten Stoffen basieren. Das sind die wichtigsten anorganischen Kohlenstoffverbindungen:

    • Wasserstofffreie Verbindungen des Kohlenstoffs mit den Chalkogenen (6. Hauptgruppe)
      • z.B. Kohlenstoffdioxid oder Kohlenstoffmonoxid
    • Kohlensäure und ihre Salze, die Carbonate
    • Carbide
      • z.B. Wolframcarbid (WC), was in Kugelschreiberminen verwendet wird
    • Ionische Cyanide, Cyanate und Thiocyanate
    • Blausäure (HCN) ist ein Grenzfall zwischen der anorganischen und der organischen Chemie
    • Organometallverbindungen beinhalten Metallatome und gleichzeitig Kohlenwasserstoffverbindungen

    Metalle und Legierungen

    Etwa drei Viertel der Elemente des Periodensystems sind Metalle. Diese Stoffgruppe der anorganischen Chemie zeichnet sich dadurch aus, dass die Atome dieser Kategorie sogenannte metallische Bindungen (Metallbindungen) eingehen können. Bei dieser Bindungsart ordnen sich die einzelnen Metallatome eng aneinander an, sodass geordnete Kristallstrukturen entstehen. Die Elektronen in Metallen bewegen sich dabei frei durch den gesamten Kristall, was unter anderem die gute elektrische Leitfähigkeit dieser Stoffgruppe der anorganischen Chemie erklärt.

    Beispiele für Metalle sind Kupfer und Zinn. Eine Mischung dieser beiden Metalle heißt übrigens Bronze – eine sogenannte Legierung. Wenn Du ins Periodensystem schaust, fällt Dir gleich der nach unten gerückte Block in der Mitte auf. Hierbei handelt es sich um die sogenannten Übergangsmetalle. Aber auch die Elemente der ersten Hauptgruppe (Alkalimetalle) und die der zweiten (Erdalkalimetalle) zählen zu den Metallen.

    Wenn Du Dich stärker in die Themen metallische Bindung oder Legierung einlesen willst, schau Dir gern die entsprechenden Erklärungen aus der anorganischen Chemie dazu an.

    Salze und Minerale

    Salze bestehen aus gegensätzlich geladenen Ionen. Das positiv geladene Ion (Kation) ist dabei in der Regel ein Metallatom, das ein oder mehrere Elektronen abgegeben hat. Als negativ geladenes Ion (Anion) kann zum Beispiel ein Halogenatom dienen, das ein Elektron zu viel trägt. Zusammen bilden diese gegensätzlich geladenen Ionen eine Ionenbindung. Auch etwa 90 % aller natürlich vorkommenden Minerale weisen eine Ionenbindung auf.

    Ein für den Menschen lebenswichtiges Salz aus der anorganischen Chemie kennst Du schon aus der Küche: Natriumchlorid (NaCl, Kochsalz).

    Als Minerale werden chemische Elemente und Verbindungen bezeichnet, die auf natürliche Weise in den Gesteinsschichten der Erde entstanden sind. Nicht alle Minerale können der anorganischen Chemie zugeordnet werden, da manche teilweise aus organischem Material bestehen. Allerdings ist die am häufigsten vorkommende Mineralgruppe Feldspat, wozu viele verschiedene anorganische Silikatminerale gezählt werden.

    Lies Dir gern mal die Erklärungen aus der anorganischen Chemie zu den Themen Gestein und Ionenbindung durch, wenn Du mehr über die Natur der Salze und Minerale lernen willst.

    Säuren und Basen

    Säuren und Basen zeichnen sich durch ihre Eigenschaft aus, positiv geladene Wasserstoffionen (H+) übertragen zu können. Weil H+-Ionen keine Elektronen besitzen, werden sie häufig als Protonen bezeichnet. In einer wässrigen Lösung sind Säuren in der Lage, diese Protonen abzugeben und werden daher Protonendonatoren genannt. Basen sind Stoffe, die Protonen aufnehmen – sie werden auch als Protonenakzeptoren bezeichnet.

    Unter den klassischen Säuren der anorganischen Chemie wird gern Salzsäure (HCl) als Beispiel genannt. Mit der Base Natronlauge (NaOH) bilden sich bei einer Säure-Base-Reaktion Wasser und Natriumchlorid, wie Du anhand dieser Reaktionsgleichung sehen kannst:

    HCl + NaOH H2O + NaCl

    Wenn Du mehr zu diesem Thema aus der anorganischen Chemie lernen willst, schau Dir die detaillierte Erklärung zur Säure Base Reaktion an.

    Nichtmetallverbindungen

    Es gibt eine Vielzahl an anorganischen Nichtmetallverbindungen, bei denen die Atome über kovalente Bindungen zusammengehalten werden. Diese Bindungsart zeichnet sich dadurch aus, dass sich die beteiligten Atome mindestens ein Elektronenpaar teilen. Die Elektronen halten sich dabei zwischen den beiden Atomkernen auf, ohne dass eines der Atome eine derart starke Anziehung ausübt, die zum Bruch der Bindung führen würde.

    Teilen sich die Atome ein Elektronenpaar, handelt es sich um eine Einfachbindung, wie sie zwischen Sauerstoff und Wasserstoff bei Wasser (H2O) vorkommt. Bei Molekülen, wie Lachgas (N2O), sind zeitweise bis zu drei Bindungen möglich, bei denen insgesamt drei Elektronenpaare beteiligt sind.

    In der Erklärung Kovalente Bindung aus der anorganischen Chemie lernst Du mehr zu diesem spannenden Thema. Außerdem kannst Du in der Erklärung zur Mesomerie mehr darüber erfahren, warum sich Elektronen über mehrere Atome verteilen können.

    Komplexchemie

    Komplexe bestehen aus einem Zentralteilchen und mindestens einem Liganden. Das Zentralteilchen ist meistens ein positiv geladenes Metallion. Die Liganden stellen jeweils mindestens ein freies Elektronenpaar für eine koordinative Bindung zur Verfügung. Auf diese Weise entstehen geometrische Strukturen, die in wässriger Lösung in vielen Fällen eine charakteristische Farbe zeigen.

    Hast Du schon mal die Reaktion von Kupfersulfat (CuSO4) mit Wasser beobachtet und Dich gefragt, woher die schöne blaue Färbung kommt? Die Farbe kommt vom Komplex [Cu(H2O)6]2+, der dabei entsteht:

    CuSO4 + H2O [Cu(H2O)6]2+ + SO42-

    Schau Dir gern den großen Bereich der Komplexchemie in der Rubrik zur anorganischen Chemie an. Mit dem Aufbau von Komplexen, der Nomenklatur von anionischen, kationischen und neutralen Komplexen sowie der Farbigkeit von Komplexen findest Du hier alles, was Du wissen musst. Lässt Dich das Thema Komplexchemie nicht locker, kannst Du Deinen Wissenshunger mit der Erklärung zur Ligandenfeldtheorie stillen.

    Nomenklatur in der anorganischen Chemie

    Hast Du Dich schon mal gefragt, wer die Namen für chemische Verbindungen aus der anorganischen Chemie vorgibt? Tatsächlich hat die International Union of Pure and Applied Chermistry (IUPAC) spezielle Regeln für die Benennung chemischer Verbindungen entworfen. Diese sogenannte IUPAC-Nomenklatur soll die Kommunikation zwischen Chemiker*innen auf der ganzen Welt erleichtern. Dir hilft sie vor allem dabei, die ganzen chemischen Verbindungen, die Du im Laufe Deines Lebens kennenlernst, besser einzuordnen und ihre Reaktivität abzuschätzen.

    Summenformeln

    Schau Dir zunächst mal die Summenformeln in der anorganischen Chemie an. Vielleicht ist Dir schon aufgefallen, dass in Verbindungen wie Kochsalz (NaCl) das Halogenion immer hinten steht – das ist kein Zufall, sondern so gewollt. Der Grund für diese Anordnung ist die höhere Elektronegativität des Chlors. Du kannst Dir also als Regel merken, dass die Atome in einer Summenformel nach aufsteigender Elektronegativität sortiert sind.

    Die Elektronegativität ist ein Maß für die Fähigkeit eines Atoms, Elektronen an den Atomkern zu ziehen. Je höher die Elektronegativität, desto einfacher gelingt es einem Atom im Vergleich zu anderen, Elektronen anzuziehen. Mehr dazu findest Du in der Erklärung zur Elektronegativität aus der anorganischen Chemie.

    Beispiele, auf die diese Regel zutrifft, sind neben NaCl auch Aluminiumoxid (Al2O3), Silberchlorid (AgCl) oder Phosphorpentafluorid (PF5).

    Sonderfall: Wasserstoff

    Natürlich ist eine Regel nichts ohne ein paar Ausnahmen. Wasserstoff steht trotz der geringen Elektronegativität immer an letzter Stelle. Beispiele für Verbindungen, auf die dieser Fall zutrifft, sind unter anderem: Ammoniak (NH3) und Siliciumwasserstoff (SiH4).

    Aber auch hier gibt es wieder eine Ausnahme – nervig, aber dafür wird es nicht so schnell langweilig in der anorganischen Chemie. Bei Verbindungen, die in wässrigen Lösungen sauer reagieren, steht der Wasserstoff immer an erster Stelle. Auf diese Weise siehst Du immer sofort, ob es sich um eine Säure handelt oder nicht. Diesen Fall kannst Du unter anderem bei diesen Verbindungen beobachten: Fluorwasserstoff (HF), Chlorwasserstoff (HCl), Wasser (H2O) und Schwefelwasserstoff (H2S).

    Benennung

    Zur Benennung von Verbindungen in der anorganischen Chemie beginnst Du mit dem ersten englischen Elementnamen einer Summenformel. Dabei wird die Atomanzahl als ausgeschriebene griechische Zahl an den Anfang gestellt. Danach gehst Du zum nächsten Element in der Verbindung und gehst genauso vor. Zum Schluss wird noch eine Endung angehängt, die beschreibt, auf welche Weise die Atome miteinander gebunden sind.

    Schau Dir zu diesem Zweck mal Wasser (H2O) genauer an. Nach dem Benennungsprinzip, das Du gerade gelernt hast, fängst Du den Namen mit Hydrogen- an. Weil aber zwei Wasserstoffatome in der Verbindung untergebracht sind, stellst Du ein Di- vorne an und erhältst Dihydrogen-.

    Als Nächstes schaust Du Dir den Verbindungspartner an und nutzt seinen englischen Namen. Beim Sauerstoff ist es Oxygen. Weil Du aber noch an die Endung denken musst, brichst Du bei Ox- ab. Zusammen mit der griechischen Zahl für eins erhältst Du: Dihydrogenmonoox-. Welche Endung ist jetzt hier die passende?

    Das Anion O2- ist ein geläufiges Anion von Wasserstoffsäuren und wie Du vielleicht schon weißt, kann Wasser sowohl als Säure als auch als Base reagieren. An die Namen von Verbindungen mit Anionen von Wasserstoffsäuren wird ein -id angehängt, sodass der volle Name Dihydrogenmonooxid lautet. Allerdings kannst Du das mono- auch weglassen, sodass Du Dihydrogenoxid erhältst. Das sind die beiden Namen für Wasser nach den Benennungsregeln der IUPAC.

    Durch die Eigenschaft als Base oder Säure reagieren zu können, wird Wasser auch als Ampholyt bezeichnet. Mehr dazu findest Du in der entsprechenden Erklärung in der anorganischen Chemie.

    Trivialnamen und alternative Bezeichnungen

    Auch wenn Dihydrogenmonooxid als Name für Wasser ziemlich cool klingt, ist er doch etwas lang und umständlich. Schön, dass für viele Substanzen aus dem Alltag kürzere und leichter zu merkende Namen genutzt werden. Keiner wird dich im Labor schief anschauen, wenn Du zu H2O einfach Wasser sagst. Diese allgemein und auch unter Chemiker*innen akzeptierten Namen werden als Trivialnamen bezeichnet. Auch die IUPAC hat diese Namen für die anorganische Chemie anerkannt, also kannst Du sie bedenkenlos benutzen.

    Zwei weitere Verbindungen, die Du vielleicht schon kennst, sind Natronlauge (NaOH) und Salzsäure (HCl). Beide Bezeichnungen sind Trivialnamen, gegen deren Verwendung nichts einzuwenden ist. Allerdings zeigen Dir die ebenfalls korrekten, präziseren Bezeichnungen Natriumhydroxid und Hydrogenchlorid (auch Chlorwasserstoff) sofort, wie eine Verbindung aufgebaut ist.

    Abgesehen von den Trivialnamen, die sich mit der Zeit verbreitet haben, ist die Benennung nach den IUPAC-Regeln in einigen Fällen zu umständlich, wodurch häufig alternative Namen benutzt werden. Ein anschauliches Beispiel dafür ist die Verbindung H2S: Nach den Benennungsregeln würde diese Verbindung Dihydrogenmonosulfid heißen, allerdings ist Schwefelwasserstoff geläufiger und ebenso richtig. Das Gleiche gilt für die Bezeichnung Chlorwasserstoff für Salzsäure aus dem obigen Beispiel.

    Bedeutung der verschiedenen Endungen

    -id als Endung für die Anionen von Wasserstoffsäuren hast Du bereits kennengelernt. Die Endung -at wird benutzt, wenn das Anion einer Verbindung aus mehreren Atomen besteht, wie beim Chloration (ClO3-) in der Chlorsäure (HClO3). Das ist häufig bei den sogenannten Elementsäuren aus der anorganischen Chemie der Fall.

    Die Namen der Anionen von Sauerstoffsäuren mit einem zusätzlichen Sauerstoffatom (Persäuren) fangen mit per- an und hören mit -at auf. Ein Beispiel dafür ist die Perchlorsäure (HClO4), die nach den Benennungsregeln auch Hydrogenperchlorat heißt.

    Weiter geht es mit den sogenannten elementigen Säuren, die die Endung -it tragen. Diese Säuren haben ein bis zwei Sauerstoffatome weniger als die entsprechenden Elementsäuren. Ein Beispiel dafür ist die chlorige Säure (HClO2) mit dem Anion Chlorit (ClO2-).

    Außerdem gibt es noch hypoelementige Säuren, die noch ein Sauerstoff weniger haben als die elementigen Säuren. Die Anionen dieser Säuren bekommen ein hypo- vorne angestellt und ein -it hinten angestellt. Konkret heißt das Anion (ClO-) der hypochlorigen Säure dann Hypochlorit.

    Weitere Benennungsregeln

    Viele Metallverbindungen in der anorganischen Chemie werden lieber mit der deutschen Bezeichnung für das Element und einer römischen Zahl für die Oxidationsstufe benannt. Ein Beispiel für diese Benennung ist Eisen(II)-sulfat (FeSO4). Außerdem folgt die Benennung von Komplexverbindungen ganz eigenen Regeln. Wenn Dich das Thema interessiert, schau Dir gern die Erklärung zur Komplexchemie aus der anorganischen Chemie an.

    Reaktionen in der anorganischen Chemie

    Die beiden wichtigsten Reaktionstypen in der anorganischen Chemie sind die Redoxreaktionen und die Säure-Base-Reaktionen.

    Redoxreaktion

    Bei einer Redoxreaktion, also einer Reduktions-Oxidations-Reaktion, werden zwischen zwei Reaktionspartnern Elektronen ausgetauscht. Die bekannteste Redoxreaktion im alltäglichen Leben ist wahrscheinlich die Verbrennung. Doch auch die Prozesse der Elektrochemie, wie sie beispielsweise in Deinem Lithium-Ionen-Akku ablaufen, sind Redoxreaktionen.

    Ein interessantes Beispiel für eine Redoxreaktion aus der anorganischen Chemie ist die Umwandlung von Kaliumchlorat (KClO3) und Schwefel (S) zu Kaliumchlorid (KCl) und Schwefeldioxid (SO2). Diese Reaktion findet beim Zünden zahlreicher Feuerwerkskörper statt.

    KClO3 + S KCl + SO2

    Hierbei wird Schwefel unter Elektronenübertragung oxidiert und Chlor reduziert. Einfach gesagt, hat also Chlor dem Schwefel die Elektronen gestohlen.

    Wie die Elektronenwanderung bei einer Redoxreaktion abläuft, erfährst Du in der entsprechenden Erklärung zu diesem Thema. Wenn Du Dich speziell für die Oxidation oder die Reduktion interessierst, findest Du auch dafür passende Erklärungen in der anorganischen Chemie. Außerdem lernst Du bei StudySmarter, wie Du die Oxidationszahlen der beiden Reaktionspartner bestimmen kannst.

    Säure-Base-Reaktion

    Basen und Säuren begegnen uns nicht nur in der anorganischen Chemie, sondern überall im Alltag. Säuren treffen wir in unserem Körper, unseren Softdrinks oder auch im sauren Regen an. Basen, wie Natronlauge, benutzen wir unter anderem, um unsere Hände zu waschen. Säure-Base-Reaktionen laufen, genau wie die Redoxreaktionen, nach dem Donator-Akzeptor-Prinzip ab. Der Unterschied liegt aber darin, dass keine Elektronen übertragen werden, sondern Protonen (H+-Ionen).

    Eine wichtige Säure-Base-Reaktion aus der anorganischen Chemie hast Du weiter oben bereits kennengelernt: die Reaktion von Salzsäure und Natronlauge. Schau Dir die Teilreaktionen in Wasser noch mal genauer an:

    HCl + H2O H3O+ + Cl(aq)-NaOH OH- + Na(aq)+

    In Wasser zerfallen Salzsäure und Natronlauge jeweils in ihre Ionen. Das Proton der Salzsäure wird vom Wasser aufgenommen, sodass ein Oxoniumion entsteht. Ein solches Kation reagiert besonders gern mit Basen. Wie gut, dass Du der wässrigen Lösung Natronlauge hinzugeben kannst, die neben dem Natriumion auch noch in ein Hydroxidion zerfällt. Dieses kann das überschüssige Proton des Oxoniumions aufnehmen, sodass sich Wasser bildet.

    Wie Säure-Base-Reaktionen im Detail verlaufen, und, was das Donator-Akzeptor-Prinzip ist, erfährst Du in den entsprechenden Erklärungen im Bereich „Anorganische Chemie“. Wenn Dich interessiert, was Säuren und Basen ausmacht, oder, was der Unterschied zwischen starken und schwachen Säuren sowie starken und schwachen Basen ist, bist Du hier genau richtig.

    Anorganischen Chemie – Anwendungen

    Die Forschungsergebnisse der anorganischen Chemie bilden die Grundlage für viele wichtige technologische Errungenschaften. Zwei wichtige Beispiele sind die Nanoteilchen und die Silikone.

    Nanoteilchen

    Nanoteilchen sind Teilchen im nanoskaligen Bereich. Aufgrund ihrer geringen Größe haben sie ganz andere Eigenschaften im Gegensatz zu normalen Materialien. Durch genaue Veränderung der Struktur von Nanoteilchen können sie für bestimmte Zwecke optimiert werden und finden so unter anderem in der Medizin eine immer größer werdende Bedeutung.

    Du hast Lust, die besonderen Eigenschaften innovativer Nanoteilchen zu entdecken? Dann wirf gern mal einen Blick in die Erklärung zu diesem Thema. Im Bereich „Anorganische Chemie“ lernst Du alles zu Nanoteilchen, was sie so besonders macht, und, wofür sie gebraucht werden.

    Silikone

    Silikone bilden die Brücke zwischen anorganischen und organischen Kunststoffen. Im Alltag kommen Silikone häufig in Backförmchen, Teigschabern oder Dichtungen vor. Durch ihre Hitzeresistenz und Elastizität eignen sie sich gut für die Anwendung in der Küche.

    Wenn Du stärker in die Welt der Silikone eintauchen willst, schau Dir gern mal die Erklärung dazu an. Im Bereich „Anorganische Chemie“ lernst Du, wie Silikone aufgebaut sind, welche Silikonarten es gibt, und, was diese Hochleistungskunststoffe so können.

    Anorganische Chemie – Das Wichtigste

    • Die Anorganische Chemie befasst sich, bis auf ein paar Ausnahmen, mit allen kohlenstofffreien Verbindungen, den anorganischen Stoffen.

    • Die wichtigsten Grundlagen der Anorganischen Chemie bilden folgende Themen ab:


    Nachweise

    1. A. F. Holleman et al. (2007). Lehrbuch der Anorganischen Chemie, 102. Auflage. Walter de Gruyter
    2. D. F. Shriver et al. (1997). Anorganische Chemie, 2. Auflage. Wiley-VCH
    Häufig gestellte Fragen zum Thema Anorganische Chemie

    Was ist der Unterschied zwischen anorganischer und organischer Chemie?

    Die organische Chemie befasst sich mit allen Kohlenstoffverbindungen. Im Gegenteil dazu befasst sich die anorganische Chemie mit allen kohlenstofffreien Verbindungen. Es gibt heutzutage zahlreiche Überschneidungen zwischen den Fachgebieten, wie beispielsweise metallorganische Verbindungen, die Metalle, klassisch anorganische Stoffe, und organische Verbindungen zusammenbringen. Ebenso gibt es Kohlenstoffverbindungen, die aufgrund ihrer Struktur oder ihrer Herkunft fern der belebten Welt, zu der anorganischen Chemie gezählt werden.

    Was versteht man unter der anorganischen Chemie?

    Die anorganische Chemie ist jener Fachbereich der Chemie, der sich mit den anorganischen Stoffen befasst. Die anorganischen Stoffe sind, bis auf ein paar Ausnahmen, alle kohlenstofffreien Verbindungen.

    Welche Stoffe sind anorganisch?

    Bis auf ein paar Ausnahmen sind alle kohlenstofffreien Verbindungen anorganisch. Die Ausnahmen für kohlenstoffhaltige anorganische Verbindung bilden unter anderem die wasserstofffreien Verbindungen des Kohlenstoffs mit den Chalkogenen (6. Hauptgruppe), die Kohlensäure und ihre Salze, die Carbide, die ionischen Cyanide, Cyanate und Thiocyanate, sowie die Blausäure, die genau genommen einen Grenzfall zwischen der anorganischen Chemie und organischen Chemie bildet. Ebenso gibt es Silikone oder metallorganische Verbindungen, die eine Überschneidung zwischen anorganischen und organischen Stoffen bilden.

    Erklärung speichern

    Teste dein Wissen mit Multiple-Choice-Karteikarten

    Welche dieser beiden Verbindungen ist eine anorganische Verbindung?

    Ist Wasser eine organische oder eine anorganische Verbindung?

    Die anorganische Chemie beschäftigt sich hauptsächlich mit der _______ Natur.

    Weiter

    Entdecke Lernmaterialien mit der kostenlosen StudySmarter App

    Kostenlos anmelden
    1
    Über StudySmarter

    StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.

    Erfahre mehr
    StudySmarter Redaktionsteam

    Team Chemie Lehrer

    • 17 Minuten Lesezeit
    • Geprüft vom StudySmarter Redaktionsteam
    Erklärung speichern Erklärung speichern

    Lerne jederzeit. Lerne überall. Auf allen Geräten.

    Kostenfrei loslegen

    Melde dich an für Notizen & Bearbeitung. 100% for free.

    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

    Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

    • Karteikarten & Quizze
    • KI-Lernassistent
    • Lernplaner
    • Probeklausuren
    • Intelligente Notizen
    Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!
    Mit E-Mail registrieren