Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

FDM

Im Zentrum des modernen 3D-Drucks steht das FDM-Verfahren. FDM, oder Fused Deposition Modeling, ist eine Methode der additiven Fertigung, die im Ingenieurwesen breite Anwendung findet. In diesem Artikel wird detailliert erklärt, was FDM ist, wie es im technischen Kontext genutzt wird, und wie es sich im Vergleich zu anderen Technologien verhält. Es werden auch Themen wie die Geschichte der FDM-Entwicklung und zukünftige FDM-Trends in der Fertigungstechnik ausgeführt. Du wirst nach dem Lesen des Artikels über ein umfassendes Verständnis des FDM-Verfahrens verfügen.

Los geht’s

Scanne und löse jedes Fach mit AI

Teste unseren Hausaufgabenhelfer gratis Homework Helper
Avatar

Lerne mit Millionen geteilten Karteikarten

Leg kostenfrei los

Schreib bessere Noten mit StudySmarter Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Did you know that StudySmarter supports you beyond learning?

SS Benefits Icon

Find your perfect university

Get started for free
SS Benefits Icon

Find your dream job

Get started for free
SS Benefits Icon

Claim big discounts on brands

Get started for free
SS Benefits Icon

Finance your studies

Get started for free
Sign up for free and improve your grades
StudySmarter Redaktionsteam

Team FDM Lehrer

  • 11 Minuten Lesezeit
  • Geprüft vom StudySmarter Redaktionsteam
Erklärung speichern Erklärung speichern
Melde dich kostenlos an, um Karteikarten zu speichern, zu bearbeiten und selbst zu erstellen.
Leg jetzt los Leg jetzt los
  • Geprüfter Inhalt
  • Letzte Aktualisierung: 21.01.2025
  • 11 Minuten Lesezeit
Inhaltsverzeichnis
Inhaltsverzeichnis
  • Geprüfter Inhalt
  • Letzte Aktualisierung: 21.01.2025
  • 11 Minuten Lesezeit
  • Inhalte erstellt durch
    Lily Hulatt Avatar
  • überprüft von
    Gabriel Freitas Avatar
  • Inhaltsqualität geprüft von
    Gabriel Freitas Avatar
Melde dich kostenlos an, um Karteikarten zu speichern, zu bearbeiten und selbst zu erstellen.
Erklärung speichern Erklärung speichern

Danke für dein Interesse an Audio-Lernen!

Die Funktion ist noch nicht ganz fertig, aber wir würden gerne wissen, warum du Audio-Lernen bevorzugst.

Warum bevorzugst du Audio-Lernen? (optional)

Feedback senden
Als Podcast abspielen 12 Minuten

Teste dein Wissen mit Multiple-Choice-Karteikarten

1/3

Was ist das FDM Verfahren im 3D-Druck?

1/3

Was ist FDM und mit welchen Materialien arbeitet es hauptsächlich?

1/3

Welche sind die grundlegenden Prozesse und Phasen des FDM 3D-Druckverfahrens?

Weiter

Einführung in das FDM Verfahren im 3D-Druck

In der Ingenieurwissenschaft spielt das FDM-Verfahren (Fused Deposition Modeling) eine entscheidende Rolle, insbesondere im Bereich des 3D-Drucks. Es handelt sich dabei um ein additives Fertigungsverfahren, bei dem ein Material schichtweise aufgetragen wird, um ein dreidimensionales Modell zu erstellen.

Was ist FDM?: FDM Definition und Bedeutung

Das FDM Verfahren oder Fused Deposition Modeling ist eine 3D-Druck Technologie, bei der ein schmelzbarer Kunststoff, typischerweise ein Thermoplast für 3D-Druck, erhitzt und durch eine Düse extrudiert wird. Das Material wird schichtweise aufgetragen, wobei jede Schicht auf der vorherigen aufbaut, bis das vollständige Modell entsteht. Diese additive Fertigungstechniken ermöglichen die Herstellung komplexer Geometrien und sind in verschiedenen Anwendungen weit verbreitet.

Dieses Verfahren kommt in vielen unterschiedlichen Bereichen der Technik zum Einsatz, einschließlich des Prototypenbaus, der Herstellung von Endprodukten, der bildenden Kunst und vielen mehr.

FDM Technologie: Die Grundlagen und der Prozess

Um die FDM Technologie und ihre Anwendung richtig verstehen zu können, ist es wichtig, die grundlegenden Prozesse und Phasen zu kennen. Hierbei handelt es sich um:
  • Erhitzung: Das Material, in der Regel ein Kunststofffilament, wird auf eine Temperatur erhitzt, bei der es schmilzt.
  • Extrusion: Das geschmolzene Material wird durch die Düse des 3D-Druckers extrudiert.
  • Auftragen: Das Material wird in Bahnen auf eine Plattform aufgetragen und bildet dort die erste Schicht des Modells.
  • Aushärten: Das Material kühlt ab und härtet aus, wodurch es seine endgültige Form beibehält.

Verwendung von FDM in der Technik: Ein Beispiel

Ein Beispiel für die Anwendung von FDM ist die Herstellung von Prototypen in der Automobilindustrie. Konstrukteure verwenden das FDM Verfahren, um Prototypen von teilen wie Türgriffen oder Schaltern zu erstellen. Diese können dann getestet und gegebenenfalls modifiziert werden, bevor die endgültigen Teile in Massenproduktion gehen.

Für solche Anwendungsfälle ist das FDM Verfahren ideal, da es kostengünstig ist und relativ schnelle Bearbeitungszeiten ermöglicht.

FDM einfach erklärt: Vor- und Nachteile

Die Vorteile der FDM Technologie sind vielfältig, darunter:
  • Günstig: im Vergleich zu anderen 3D-Druckmethoden ist FDM kostengünstig.
  • Vielzahl an Materialien: Mit FDM können verschiedene Materialien verarbeitet werden, einschließlich Kunststoffe und Metalle.
  • Einfache Anwendung: FDM ist relativ einfach zu bedienen und zu erlernen.
Allerdings gibt es auch einige Nachteile, welche sich wie folgt darstellen:
Niedrigere Auflösung FDM Drucker haben in der Regel eine niedrigere Auflösung als andere 3D-Drucktechnologien, daher sind die gedruckten Teile oft weniger detailliert.
Unterstützungsstrukturen Für überhängende und schwebende Teile sind zusätzliche Stützstrukturen erforderlich, die später entfernt werden müssen. Dies erhöht den Zeitaufwand und das Material.
Trotz der Nachteile bleibt FDM eine der am häufigsten verwendeten Technologien im 3D-Druck.

FDM vs SLA: Ein Vergleich der Fertigungstechniken

In der Welt der additiven Fertigung sind FDM und SLA zwei prominenteste Techniken, die jeweils ihre eigenen Vor- und Nachteile mit sich bringen. Beide Verfahren ermöglichen das Erzeugen physischer Objekte aus digitalem Design, unterscheiden sich jedoch in ihren Prozessen, Materialien und Anwendungsbereichen deutlich.

FDM-Drucker: Eine Übersicht

FDM Drucker sind weit verbreitet und stellen die häufigste Form des 3D-Drucks dar. Sie sind grundsätzlich auf das Arbeiten mit thermoplastischen Materialien ausgerichtet.

Thermoplaste sind Kunststoffe, die bei Erwärmung erweichen und beim Abkühlen aushärten. Dieser reversible Prozess ermöglicht es, Thermoplaste mehrfach zu verarbeiten, was sie besonders geeignet für das FDM Verfahren in der additiven Fertigung macht. In der Fused Deposition Modeling Technologie werden diese Materialien häufig verwendet, um präzise und langlebige 3D-Druckobjekte zu erstellen. Die Vielseitigkeit von Thermoplasten für 3D-Druck eröffnet zahlreiche Anwendungsmöglichkeiten in verschiedenen Branchen.

FDM Drucker arbeiten durch Erhitzen des Kunststoffmaterials bis zur Schmelze und anschließendes Extrudieren durch eine Düse, die über die X- und Y-Achse des Druckers bewegt wird. Diese Bewegung folgt einem bestimmten Muster, das vom 3D-Modell des zu druckenden Objekts bestimmt wird. Vor dem Druck muss das 3D-Modell mit spezieller Software in eine Reihe von horizontalen Schichten zerlegt werden. Jede Schicht entspricht dabei einer bestimmten Höhe auf der Z-Achse des Druckers. Abhängig von der Präzision, die erreicht werden soll, können diese Schichten einen Abstand von wenigen Mikrometern haben. Nach dem Druck haben die Objekte eine nachvollziehbare Struktur, die aus den aufeinander aufgebauten Schichten besteht. Manchmal sind diese Schichten sichtbar, insbesondere wenn mit niedriger Druckauflösung gedruckt wird.

FDM vs SLA: Unterschiede und Gemeinsamkeiten

Sowohl FDM als auch Stereolithographie (SLA) sind additive Fertigungsverfahren, das bedeutet, sie bauen Objekte Schicht für Schicht auf. Allerdings unterscheiden sie sich erheblich in der Art und Weise, wie dies erreicht wird. Während FDM hochtemperaturne Kunststoffe schmilzt und diese durch eine Düse auf eine Plattform aufträgt, verwendet SLA Ultraviolett-Laser, um spezielle Harze zu härteten. Der Laser fährt dabei die Konturen jeder Schicht im Harz-Reservoir ab und härtet die Harzmasse Stück für Stück. Dies führt zu hohen Detailgrad und ist ideal für feine Details und Komplexität.
FDM SLA
Arbeitet mit thermoplastischen Materialien Verwendet lichtempfindliche Harze
Ideal für robuste, funktionale Teile Perfekt für hochdetaillierte Modelle
Günstig in der Anschaffung und im Betrieb Teurer sowohl in der Anschaffung als auch im Verbrauch

Vorteile von FDM im Vergleich zu SLA

FDM hat gegenüber SLA eine Reihe von Vorteilen. Ein großer Vorteil liegt in den Kosten. FDM-Drucker sind nicht nur billiger in der Anschaffung, sondern auch die Materialkosten sind signifikant niedriger verglichen mit den spezialisierten Harzen, die in SLA-Druckern verwendet werden. Darüber hinaus sind FDM-Drucker leichter zu warten und zu bedienen. Ein weiterer Vorteil von FDM liegt in der Robustheit der gedruckten Teile. Während die mit SLA gedruckten Teile zwar eine höhere Auflösung und Detailliertheit aufweisen, sind sie in der Regel weniger robust und weniger hitzebeständig als FDM-gedruckte Teile. Zuletzt ist die Auswahl der Materialien für FDM weitaus größer als für SLA. Bei FDM steht eine breite Palette von Thermoplasten zur Verfügung, darunter PLA, ABS und PETG, die alle verschiedene Eigenschaften aufweisen und sich für unterschiedliche Anwendungsbereiche eignen.

Bei SLA ist die Materialauswahl begrenzt, da spezielle photoreaktive Harze benötigt werden. Dennoch ist dies auch ein Vorteil von SLA, da diese Harze sehr feine Details und glatte Oberflächen ermöglichen, die mit FDM nur schwer zu erreichen sind.

Bleib immer am Ball mit deinem smarten Lernplan

Kostenlos registrieren
Intent Image

Entwicklung und Anwendung von FDM in der Fertigungstechnik

Die Entwicklung der FDM-Technologie und ihre Anwendungen in der Fertigungstechnik haben das Gesicht der modernen Produktion maßgeblich verändert. Vom Rapid Prototyping bis zur Direktfertigung ermöglicht diese Technologie die schnelle und kostengünstige Herstellung von Teilen und Produkten.

Geschichte der FDM Entwicklung im 3D-Druck

Die Anfänge der FDM-Technologie lassen sich auf das letzte Jahrzehnt des 20. Jahrhunderts zurückverfolgen. Der Mechaniker und Erfinder Scott Crump entwickelte die Technologie im Jahr 1988 und gründete die Firma Stratasys, um seine wichtige Erfindung zu kommerzialisieren.

FDM, ein Akronym für Fused Deposition Modeling, ist ein additives Fertigungsverfahren, bei dem geschmolzene Thermoplaste für 3D-Druck schichtweise aufgetragen werden, um ein dreidimensionales Objekt zu erstellen. Diese FDM Technologie ist eine der am häufigsten verwendeten additiven Fertigungstechniken und ermöglicht die Herstellung komplexer Geometrien mit hoher Präzision.

Mit der fortschreitenden Technologie wurden Unternehmen und Bildungseinrichtungen zunehmend auf die Technologie aufmerksam. In den späten 90er und frühen 2000er Jahren begannen viele Unternehmen, das Potenzial der 3D-Drucktechnologie zu erkennen und in ihre Produktionsprozesse zu integrieren. Seitdem ist die FDM-Technologie konstant gewachsen und hat sich zu einer der führenden Technologien im Bereich des 3D-Drucks entwickelt. FDM hat den Innovationsprozess in zahlreichen Branchen beschleunigt, wie z.B. der Automobilindustrie, der Architektur oder dem medizinischen Sektor.

FDM im Ingenieurstudium: Praktische Anwendung und Erklärung des Prozesses

Im Bereich des Ingenieurstudiums spielt FDM eine wichtige Rolle. Diese Technologie ermöglicht es Studenten, ihre Entwürfe schnell und kostengünstig zu materialisieren und ihre Ergebnisse zu testen. Die meisten FDM-Drucker verwenden Thermoplaste wie ABS (Acrylnitril-Butadien-Styrol) und PLA (Polylactide). Die Drucker erhitzen das Material bis es schmilzt und tragen es dann Schicht für Schicht auf eine Bauplattform auf. Jede Schicht kühlt und härtert aus, bevor die nächste Schicht aufgetragen wird. Dieser Prozess wird wiederholt, bis das gesamte Modell gedruckt ist. Ein weiterer wichtiger Aspekt des FDM-Prozesses ist die Unterstützungsstruktur. Bei komplexen Modellen, die überhängende Bereiche oder Hohlräume aufweisen, ist eine sogenannte Stützstruktur notwendig, welche das Modell während des Drucks stabilisiert. Diese Stützstrukturen werden nach Abschluss des Druckvorgangs entfern. Die Integration von FDM-Technologie in das Ingenierustudium ermöglicht es den Studenten, fundiertes Wissen über die Funktionsweise der Technik und ihre Anwendung in Industrie und Forschung zu erlangen.

Zukünftige Trends: FDM in der Fertigungstechnik

Die FDM-Technologie entwickelt sich ständig weiter und wird voraussichtlich auch in Zukunft eine bedeutende Rolle in der Fertigungstechnik spielen. Ein aktueller Trend ist die Verwendung von neuen Materialien im FDM-Druck. Neben den gängigen Thermoplasten werden auch kompostierbare Materialien und Metalle in FDM-Druckern eingesetzt. Ein weiterer bedeutender Trend ist der Übergang zur Automation und Vernetzung im Rahmen der Industrie 4.0. Dies bedeutet, dass 3D-Drucker immer mehr in das Internet der Dinge (IoT) eingebunden werden. Automatisierte 3D-Druckfertigungslinien könnten die traditionelle Massenproduktion ergänzen oder sogar ersetzen.

Ein weiterer zukunftsweisender Bereich ist die Anwendung der FDM-Technologie in der Bio-Fertigung. Dabei handelt es sich um das Drucken von biologischen Materialien, wie Zellen und Geweben, mit dem ultimativen Ziel, menschliche Organe für Transplantationen zu drucken.

Obwohl es noch einige Herausforderungen zu meistern gibt, deutet alles darauf hin, dass die FDM-Technologie weiterhin im Zentrum der additiven Fertigung stehen wird.

FDM - Das Wichtigste

  • FDM (Fused Deposition Modeling) ist ein 3D-Druckverfahren, bei dem ein schmelzbarer Kunststoff erhitzt und schichtweise aufgetragen wird, um ein dreidimensionales Modell zu erstellen.
  • Die FDM Technologie wird in vielen Bereichen der Technik eingesetzt, einschließlich des Prototypenbaus und der Herstellung von Endprodukten.
  • FDM-Verfahren beinhaltet grundlegende Prozesse wie Erhitzung, Extrusion, Auftragen und Aushärten des Materials.
  • FDM hat Vor- und Nachteile: Es ist kostengünstig, vielseitig und einfach zu bedienen, kann jedoch eine niedrigere Auflösung und eine erhöhte Notwendigkeit für Stützstrukturen aufweisen.
  • Im Vergleich zu SLA, einer anderen prominenten additiven Fertigungstechnik, ist FDM ideal für robuste, funktionale Teile und hat geringere Kosten, sowohl in der Anschaffung als auch im Betrieb.
  • Die Entwicklung und Anwendung von FDM in der Fertigungstechnik hat das Gesicht der modernen Produktion maßgeblich verändert, mit zukünftigen Trends in Richtung Automatisierung, Vernetzung und Bioprinting.

References

  1. Yifei Li, Jeongwon Park, Guha Manogharan, Feng Ju, Ilya Kovalenko (2024). A Mobile Additive Manufacturing Robot Framework for Smart Manufacturing Systems. Available at: http://arxiv.org/abs/2404.13034v1 (Accessed: 21 January 2025).
  2. Santosh Rajkumar (2022). Effect of infill pattern and build orientation on mechanical properties of FDM printed parts: An experimental modal analysis approach. Available at: http://arxiv.org/abs/2202.05692v1 (Accessed: 21 January 2025).
  3. Akshansh Mishra (2023). Supervised Machine Learning and Physics based Machine Learning approach for prediction of peak temperature distribution in Additive Friction Stir Deposition of Aluminium Alloy. Available at: http://arxiv.org/abs/2309.06838v2 (Accessed: 21 January 2025).
Lerne schneller mit den 12 Karteikarten zu FDM

Melde dich kostenlos an, um Zugriff auf all unsere Karteikarten zu erhalten.

FDM
Häufig gestellte Fragen zum Thema FDM

Was bedeutet FDM?

FDM steht für "Finite-Differenzen-Methode". Es handelt sich dabei um eine numerische Methode zur Lösung von Differentialgleichungen, die häufig in der Ingenieurwissenschaft eingesetzt wird.

Wie funktioniert FDM-Drucken?

Beim FDM-Drucken (Fused Deposition Modeling) wird ein thermoplastisches Filament durch eine erhitzte Düse gedrückt und schichtweise auf eine Bauplattform aufgetragen. Das Material schmilzt und verfestigt sich nach dem Auftragen. Der Druckkopf bewegt sich entlang vorher definierter Bahnen und erstellt so das dreidimensionale Objekt.

Welche Materialien können im FDM-Verfahren verarbeitet werden?

Im Fused Deposition Modeling (FDM)-Verfahren können verschiedene thermoplastische Materialien verarbeitet werden, darunter ABS (Acrylnitril-Butadien-Styrol), PLA (Polylactid), Nylon, PETG (Polyethylenterephthalat Glykol) und Hochleistungsthermoplaste wie PEEK (Polyetheretherketon). Zudem sind auch spezielle Verbundwerkstoffe, die Metalle oder Kohlenstofffasern enthalten, in einigen FDM-Systemen einsetzbar.

Erklärung speichern
Wie stellen wir sicher, dass unser Content korrekt und vertrauenswürdig ist?

Bei StudySmarter haben wir eine Lernplattform geschaffen, die Millionen von Studierende unterstützt. Lerne die Menschen kennen, die hart daran arbeiten, Fakten basierten Content zu liefern und sicherzustellen, dass er überprüft wird.

Content-Erstellungsprozess:
Lily Hulatt Avatar

Lily Hulatt

Digital Content Specialist

Lily Hulatt ist Digital Content Specialist mit über drei Jahren Erfahrung in Content-Strategie und Curriculum-Design. Sie hat 2022 ihren Doktortitel in Englischer Literatur an der Durham University erhalten, dort auch im Fachbereich Englische Studien unterrichtet und an verschiedenen Veröffentlichungen mitgewirkt. Lily ist Expertin für Englische Literatur, Englische Sprache, Geschichte und Philosophie.

Lerne Lily kennen
Inhaltliche Qualität geprüft von:
Gabriel Freitas Avatar

Gabriel Freitas

AI Engineer

Gabriel Freitas ist AI Engineer mit solider Erfahrung in Softwareentwicklung, maschinellen Lernalgorithmen und generativer KI, einschließlich Anwendungen großer Sprachmodelle (LLMs). Er hat Elektrotechnik an der Universität von São Paulo studiert und macht aktuell seinen MSc in Computertechnik an der Universität von Campinas mit Schwerpunkt auf maschinellem Lernen. Gabriel hat einen starken Hintergrund in Software-Engineering und hat an Projekten zu Computer Vision, Embedded AI und LLM-Anwendungen gearbeitet.

Lerne Gabriel kennen
1
Über StudySmarter

StudySmarter ist ein weltweit anerkanntes Bildungstechnologie-Unternehmen, das eine ganzheitliche Lernplattform für Schüler und Studenten aller Altersstufen und Bildungsniveaus bietet. Unsere Plattform unterstützt das Lernen in einer breiten Palette von Fächern, einschließlich MINT, Sozialwissenschaften und Sprachen, und hilft den Schülern auch, weltweit verschiedene Tests und Prüfungen wie GCSE, A Level, SAT, ACT, Abitur und mehr erfolgreich zu meistern. Wir bieten eine umfangreiche Bibliothek von Lernmaterialien, einschließlich interaktiver Karteikarten, umfassender Lehrbuchlösungen und detaillierter Erklärungen. Die fortschrittliche Technologie und Werkzeuge, die wir zur Verfügung stellen, helfen Schülern, ihre eigenen Lernmaterialien zu erstellen. Die Inhalte von StudySmarter sind nicht nur von Experten geprüft, sondern werden auch regelmäßig aktualisiert, um Genauigkeit und Relevanz zu gewährleisten.

Erfahre mehr
StudySmarter Redaktionsteam

Team Ingenieurwissenschaften Lehrer

  • 11 Minuten Lesezeit
  • Geprüft vom StudySmarter Redaktionsteam
Erklärung speichern Erklärung speichern

Lerne jederzeit. Lerne überall. Auf allen Geräten.

Kostenfrei loslegen

Melde dich an für Notizen & Bearbeitung. 100% for free.

Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

  • Karteikarten & Quizze
  • KI-Lernassistent
  • Lernplaner
  • Probeklausuren
  • Intelligente Notizen
Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!
Sign up with GoogleSign up with Google
Mit E-Mail registrieren

Schließ dich über 30 Millionen Studenten an, die mit unserer kostenlosen StudySmarter App lernen

Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

Intent Image
  • Intelligente Notizen
  • Karteikarten
  • AI-Assistent
  • Lerninhalte
  • Probleklausuren